Monthly Archives: October 2018

Digging Deeper into … Representing and Interpreting Data (infants to second class)

Category : Uncategorized

For practical suggestions for families, and links to useful digital resources, to support children learning about the topic of data, please check out the following post: Dear Family, your Operation Maths Guide to Data

Data Analysis Process

Data analysis, whether at lower primary, upper primary, or even at a more specialised level of statistics, is essentially the same process:

  • It starts with a question, that doesn’t have an obvious and/or immediate answer. Information is then collected relevant to the question.
  • This collected information or data is represented in a structured way that makes it easier to read.
  • This represented data is then examined and compared (interpreted) in such a way as to be able to make statements about what it reveals and, in turn, to possibly answer the initial question (if the question remains unanswered it may be necessary to re-start the process again, perhaps using different methods).

Thus, every data activity should start with a question, for example:

When choosing a question it is worth appreciating that some questions might not lend themselves to rich answers. Take, for example, the first question above; once the data is collected, and represented, there is not that much scope for interpretation of results other than identifying the most common eye/hair colour and comparing the number of children with one colour as being more/less than another colour. However, other questions might lead to richer answers, with more possibilities to collect further information, to make predictions and to create connections with learning in other areas. Take, for example, the question above about travel; the children could be asked to suggest reasons for the results e.g. can they suggest why they think most children walked/came by car on the day in question, whether weather/season/distance from school was a factor and to suggest how the results might be different on another day/time of year. Even in a very simple way, the children are beginning to appreciate that data analysis has a purpose i.e. to collect, represent and interpret information, so as to answer a question.

From Operation Maths Jr Infs TRB p. 147

Sets and Data

Data is very closely related to sorting and classifying sets:

  • The initial question may focus on a particular set in the classroom e.g. identifying the most common/frequent occurring item in the set of farm animals, the set of buttons in our button box, the shoes that the children are wearing, the nature items collected on the walk etc
  • Information is then collected by sorting and classifying the items in the original set according to the target attribute.
  • This collections of items are represented in a structured way that makes it easier to compare e.g. items put in lines of same type, use cubes or drawings to represent the actual items.
  • This represented data is interpreted to answer the question and to make other statements about  relationships e.g. which group has more, less etc

Thus sorting and classify activities should be viewed as potential springboards into data activities and it is important that the children realise that they can represent and compare the size of the sets within each sort by graphing them.

CPA Approach

Even as the children move into first and second classes, it is important that their data activities continue to follow a CPA approach:

Concrete: Continuing to use real objects initially to sort and classify ) e.g. the number of different colour crayons in a box, the different type of PE equipment in the hall , the different fruit we brought for lunch etc), progressing towards using unifix cubes, blocks, cuisinere rods etc to represent the same data. Indeed, the children themselves could be used at this stage; sort the children into groups according to eye colour, hair colour,  age etc and get them to organise themselves into lines that represent the same criterion. This is turn can be very useful for the children to realise that how they are lined up is crucial to being able to interpret the data easily and correctly. If you have visible tiles/markings as flooring on the classroom/hall/corridor, these can be used to organise the “data” accurately!

The children can build block graphs using cubes or blocks, laid flat on a piece of paper or their Operation Maths MWBs.

Pictorial: using multiple copies of identical images to make pictograms and/or using identical cut out squares/rectangles of paper on which the children draw an image that represents the data as it relates to them (e.g. how I traveled to school today). These can then be collected and organised into lines, so that it is easier to read the data. As a development, identical cut out squares/rectangles of paper of different colours can be used with the children taking the correct colour as it relates to them (e.g. choosing the colour for their eyes/hair colour etc.) while also progressing towards using a specific colour for a specific criterion (“Take a blue square if you walked to school today”). Thus, the children should begin to appreciate the need to label the graph, axes etc so that the meaning of the represented data can be correctly interpreted.

HINT: A common confusion among children when making vertical graphs of any type is that the pictures/blocks start at the top and go down; an understandable misconception when you consider that in most other activities we work from the top down! A simple way to show how vertical graphs are formed, is to demonstrate, using a concrete Connect 4 type game, how the first counter in each column falls to the bottom and subsequent counters in that column build up from there. If you don’t have an actual Connect 4 game in your classroom you could use an interactive type such as this one here

Abstract: the final stage, where the focus is primarily on numbers and/or digits e.g. identifying how many, how many more prefer this than that etc.

Further Reading and Resources

Thinking Strategies for Multiplication and Division Number Facts

What are number facts?

Number facts are the basic number facts that, it is hoped, children could recall instantly, so as to improve their ability to compute mentally and use written algorithms. Traditionally referred to as tables, the multiplication and division number facts typically include all the multiplication facts up to 10 x 10 and their inverse division sentences.

Some of the big ideas about number facts:

  • Some facts are easier than others to recall – which ones, do you think?
  • The easier facts can be used to calculate other facts – which ones, do you think?
  • The same fact can be calculated using various approaches – these approaches are often referred to as thinking strategies – see more below.
  • Using thinking strategies means that the children can apply the understanding, to facts beyond the traditional limits of “tables”.


What are thinking strategies?

A thinking strategy is a way to think about a process to arrive efficiently at an answer. For example, if asked to multiply a number by 2, one could double the number. Doubling is a very effective thinking strategy for the multiplication facts of 2, 4 and 8, as can be seen in the video below.


Halving is the opposite to doubling. And halving is a very effective thinking strategy to use for the multiplication facts of 5; if asked to multiply a number by 5, one could think of 10 times the number and then halve that amount (see below).

The Operation Maths  and Number Facts books for third and fourth classes repeatedly emphasise (among other thinking strategies) the strategy of doubling and halving known facts to derive unknown facts, eg through doubling I can work out 2 times, 4 times and 8 times a number; if I know 10 times the number I can work out 5 times, etc. 

From Operation Maths 3, possible thinking strategies for 2x, 5x, 10x.

The 100 dots grids on the inside back covers of Operation Maths 3 and 4 and Number Facts 3 and 4 can be extremely useful for the pupils to model various arrangements/arrays, while the teacher can use the Operation Maths 100 square eManipulative to replicate (and label) the children’s arrangements on the IWB.

Using doubling to model 2 x 6, “2 rows of 6”, 4 x 6, 8 x 6 (left) and trebling to model 3 x 7, 6 x 7, 9 x 7 (right)

Furthermore, multiplication and division are taught together throughout the Operation Maths series, so that, rather than compartmentalising each operation, the children develop a better understanding of how both concepts relate to each other. In this way, the basic division facts are easier to acquire, as they are understood to be the inverse of the more familiar multiplication facts. However, it is important that within each group of facts, the children explore the multiplication facts first; the better their understanding of these, the more likely they are understand the inverse division facts. Indeed, “think multiplication” is in itself, a thinking strategy for the division facts (see video below).


Traditionally, learning “tables” had been by rote, but current research suggests that this is ineffective for the majority of children. In contrast, children should be taught to visualise numbers and to use concrete materials, images and thinking strategies to use what they know to solve what they do not know. Below are examples of some useful thinking strategies for the basic multiplication and division facts (taken from Number Facts 3 & 4, Edco, 2018)

There can often be different ways to think about the same fact (or groups of facts), and the children should always be encouraged both to identify alternative approaches and to choose their preferred strategy. For example, consider 5 x 9:

5 times is half of 10 times: 10 × 9 = 90, so 5 × 9 = half of 90 = 45
9 times is one set less than 10 times: 10 × 5 = 50, so 9 × 5 = 50 − 5 = 45
9 times is treble 3 times: 3 × 5 = 15, so 9 × 5 = treble 15 = 45

Once the children understand how to arrive at an answer via a thinking strategy, they can then apply this thinking strategy to more complex calculations that are beyond the traditional 10 x 10 ceiling of “tables”; for example if I understand 5 times any number is half 10 times the number, then I can use this to mentally calculate 5 x 18, 5 x 26 etc (see more on this below).


Computational Fluency:

‘Fluency requires the children to be accurate, efficient and flexible.’ (Russell, 2000).

The primary aim of both the Operation Maths and Number Facts series (see more information on Number Facts below) is to enable the children to become computationally fluent. To achieve computational fluency, the children must be accurate, efficient and flexible:

  • Accurate: the children must arrive at the correct answer, e.g. 6 x 8  =48.
  • Efficient: the children must calculate the answer in an efficiently. A child who produces an answer of 48 in response to the question 6 × 8 by counting in jumps of six or eight may be accurate but is not efficient.
  • Flexible: children must be able to visualise and mentally manipulate numbers in order to see how they might be broken down and recombined to get an accurate and efficient answer (as shown with the various ways to consider 6 x 8 below).

Thus, flexibility is the key to fluency. A child who only knows that 6 x 8 = 48 becasue they have memorized that fact, is missing out on all the various possible connections between those numbers, subsequently hampering future connection-building. In contrast, a child who is flexible with number facts is one with a well-developed number sense, who can see the connections both between and within numbers, i.e. they can partition and/or combine numbers into more compatible (friendly) amounts and can apply their strategies to numbers beyond those they have dealt with. Therefore, a thinking strategies approach will not only be effective for aiding understanding and recall of the basic facts up to 10 x 10, a thinking strategies approach can enable children to apply these mental computation skills to numbers beyond this traditional ceiling, as shown below.

From Number Facts 4


The Number Facts Series from Edco

Number Facts is latest addition to the Edco Primary Maths stable, and it is a series of activity books designed to foster fluency in number facts for primary school children from First Class. The series features an innovative approach to the acquisition of basic number facts, and, like Operation Maths, teaches children to understand, not just do, maths.

Image result for number facts edco

In contrast to the more traditional drill-and-practice workbooks, which just test whether the answer is known, Number Facts teaches children to visualise numbers pictorially and to use these images and thinking strategies to become more adept at manipulating numbers. The specific focus of Number Facts will be to develop children’s thinking strategies and apply these to the basic number facts in such a way as to promote the child’s ability to visualise and recall these facts, thereby achieving fluency.

Both this rationale, and the suggested teaching approaches to the teaching of the basic multiplication and division facts for third and fourth classes, are clearly outlined in the Teachers Resource Book (TRB) which accompanies the series, and which is downloadable here. This TRB also includes a Long Term Plan for both third and fourth classes (see extract below), outlining a logical progression for the various fact groups throughout the school year. To view sample pages from the pupils Number Facts books please click here. Sample copies of all the books are also available from your local Edco reps.


Further reading and viewing: