Are you compensating?!

Are you compensating?!

A key recurrent theme in Operation Maths is the teaching of specific strategies to promote the development of flexible and fluent mathematical learners. In a similar way to the Building Bridges approach to reading, which advocates explicitly teaching specific reading comprehension skills, Operation Maths explicitly explores a range of specific strategies in a spiral and progressive way, in order to equip the children with the necessary skills for them to become capable and confident at problem-solving and computing mentally. Particular to mental computation, Operation Maths introduces the children to a range of of mental calculation skills, one of which is compensation.




Compensation is primarily an addition strategy where the aim is to to adjust one addend to become an easier number to add with.  This involves moving the quantity required to do this  from one addend to the other. In Operation Maths, these easier numbers are usually referred to as  friendly or compatible numbers and can include doubles, multiples of ten (10, 20, 30…) or, in the older classes, multiples of the powers of ten (100, 200, 300…..; 4,000,  5,000,  6,000 etc).



As with all new concepts and strategies, Operation Maths advocates a CPA approach. An ideal introduction to compensation is with the Operation Maths frames in first class when the children first begin to notice how adding onto 9 can be made easier by moving a counter from the other quantity to the 9 to make it become a ten. When ready, the children can also begin to explore how they can also make tens when adding to 8 and 7 by moving 2 and 3 counters respectively.

This can progress to using cubes  for bigger numbers; again, this should start with addends ending in 9 eg 19, 29, 39 etc. Encourage the children to see ways to make the calculations become easier, and encourage them to use the language of moving (not adding or subtracting) a cube from one number to the other, to make a friendly number. When ready, they should then develop this strategy to use with addends ending in 8 and 7, by moving 2 and 3 from the other number. In this way, the children can also begin to start doing addition with renaming, without having to grapple with the traditional written algorithm ( or column method).


With first and second classes, it can be helpful also to show what is happening to the actual numbers in the calculation by using an arrow to highlight the quantity moving from one addend to the other. Notice how the calculation is being presented horizontally; this encourages children to consider the whole number and how it relates to the other number in the calculation. It also encourages the child to consider alternatives to the written column method, on which many children can be over-reliant.

In the senior end books for Operation Maths, branching (see red figures below) is used  to show the process of compensation and this can be particularly useful when the numbers involved are bigger than what might practically be shown using concrete materials. Never-the-less, it is always recommended to return to examples that can be demonstrated concretely, if the child finds the intermediary branching stage difficult to understand.


The ultimate aim is, that when presented with a random calculation, that the children will recognize and use compensation if it is an appropriate and efficient strategy. The suitability of compensation as an efficient strategy will depend on the numbers involved, which in turn requires flexibility on the child’s part. In most cases, this will only be likely, if they have previously encountered compensation, and a variety of other mental computation strategies, in structured  and meaningful lessons, like those provided by Operation Maths.


Further reading: